DIFFERENTIALLY CLOSED FIELDS

BV

SAHARON SHELAH

ABSTRACT

We prove that even the prime, differentially closed field of characteristic zero, is not minimal; that over every differential radical field of characteristic p , there is a closed prime one, and that the theory of closed differential radical fields is stable.

Introduction

Let T_d be the theory of differential fields, that is, the axioms of fields in addition to the following axioms on the (abstract) differentiation operator:

$$
D(x + y) = Dx + Dy
$$

$$
D(xy) = (Dx)y + xDy.
$$

Let an upper index indicate the characteristic of the field.

 T_d is a natural generalization of the theory of fields which Ritt [4] invented. It is natural to look for an analog to the algebraic closure of a field. Seidenberg $[7]$ has done algebraic work along these lines. Using his work, Robinson [5] showed that T_d^0 has a model completion T_{dc}^0 (that is, the theory of differentially closed fields of characteristic zero). Thus every T_d^0 -field can be extended to a T_{dc}^0 -field, however Robinson does not give an explicit set of axioms for T_{dc}^0 . Blum [1] showed that the following axioms suffice:

(1) T_a^0

(2) For differential polynomials P_1 , P_2 (in single variable y) of order m_1 , m_2 , for $m_1 > m_2$, there is a solution of $P_1 = 0$ which is not a solution of $P_2 = 0$, and there is a solution of $P_2 = 0$, provided that P_2 has degree greater than zero.

Received June 5,1973

Blum also showed that T_{dc}^0 is totally transcendental, and the maximal Morley rank is ω hence over every T_a^0 -field there is a prime T_{ac}^0 -field. (See Morely [3], or [6] for example.) By a general result of $\lceil 10 \rceil$ (or $\lceil 7 \rceil$, for example) this prime T_{d}^{0} -field is unique. However here we answer a question of Blum (which appears in [6]) by showing that the prime T_{dc}^{0} -field is not necessarily minimal. This shows that the analogy with algebraically closed fields fails. The proof indicates to me (in contrast to Sacks $[6, p. 307]$) the following conjecture.

CONJECTURE 1.

(i) For every $m < \omega$ there is a T_d^0 -field F, and a differential polynomial $P(y)$ of order *m* with coefficients in F such that the Morley rank of $P(y) = 0$ is 1, (or at least less than m) and that even P has integer coefficients.

(ii) Moreover, there is a differential polynomial of order 0 (less than m), $P_1(y) \neq 0$, such that if y_1, \dots, y_n are solutions of $P(y) = 0 \land P_1(y) \neq 0$ and $P_2(y_1, \dots, D^y{}_j, \dots)_{i \le m} = 0$, where P_2 is a polynomial with coefficients in F, then P_2 is the zero polynomial. (ii) implies (i).

Let us try to generalize to partial differentiation. Then we have a field with n differential operators, D_1, \dots, D_n , satisfying in addition, that $D_i D_j y = D_i D_i y$. But nothing new results. When the characteristic of the field is zero, we obtain a model completion with elimination of quantifiers, which is totally transcendental and has maximal Morley rank ωn . I am quite sure that for characteristic p as well, this does not make any essential difference. If we add D_n , $n < \omega$, we arrive at a stable but not superstable theory.

We also show that although T_{dc}^0 is trivial in some aspects, when we allow cardinality quantifiers, it becomes complex. Hence T_{dc}^0 has 2^{λ} non-isomorphic models in every $\lambda > \aleph_0$.

CONJECTURE 2. T_{dc}^0 has 2^{\aleph_0} non-isomorphic models of power \aleph_0 .

Wood [13], again using Seidenberg [7] deals with $T_a^{\ p}$ for $p > 0$. (Notice that here if an element a has a p-th root, then it is constant, that is, $Da = 0$.) Wood showed that T_d^p does not have the amalgamation property. However, if we add the axiom

$$
[Dx = 0 \rightarrow (r(x)^p = y)] \wedge [Dx \neq 0 \rightarrow r(x) = 0]
$$

and obtain T_{rd}^p (that is, the theory of radical differential fields of characteristic p), then it has the amalgamation property, and has a model completion T_{rdc}^p , which has elimination of quantifiers. (A T_a^p -field F can be expanded to a T_a^p -field if

 $Da = 0 \rightarrow (3x)(x^p = a)$ for $a \in F$, and the expansion is unique; thus we do not differentiate strictly between the field and its expansion.) Wood showed that, unlike F_{dc}^0 , T_{rdc}^p is not totally transcendental, hence the existence of a prime T_{rdc}^p -field remains an open question. Wood and the author independently solved the question (the author proved it after $[9]$ but before $[14]$ were submitted, see [15]). We do not know however, whether Conjecture 3 holds.

NOTE. Some of the results of this paper were previously announced in [9].

CONJECTURE 3. The prime T_{rdc}^p -field over any T_{rdc}^p is unique.

By small changes in [13] it follows that T_{rdc}^p is not superstable (see [12]).

1. The non-minimality of the prime differentially closed field

Now we state the main lemma of this section.

LEMMA 4. Let F be a differential field of characteristic zero, y_1, \dots, y_n *distinct nonzero solution (in F) of*

$$
Dy = \frac{y}{1+y}.
$$

If $P(x_1, \dots, x_n)$ is a polynomial with rational coefficients and, in F, $P(y_1, ..., y_n) = 0$, then *P* is identically zero.

PROOF.

Stage (i). Without loss of generality, assume F includes the field F_0 of algebraic numbers. We suppose $y_1, \dots, y_{n+1} \in F$ are distinct and not zero, $P_0(y_1, \dots, y_{n+1})= 0$, $P_0(x_1, \dots, x_{n+1})$ is a nontrivial polynomial with algebraic coefficients and we shall arrive at a contradiction. Without loss of generality, n is minimal; for this *n* the degree of P_0 in x_{n+1} is minimal and then the degree of P_0 is minimal. Hence $P_0(y_1, \dots, y_n, x)$ is indecomposable over $F_0(y_1, \dots, y_n)$, and y_1, \dots, y_n are transcendentally independent over F_0 .

Stage (ii). Let us look at the function $x = y + \ln y$. Clearly, for real $y > 0$, $y + \ln y$ is an increasing function whose range is the set of real numbers; let its inverse be $y = f(x)$. Thus $f(x)$ is defined for every real x; it increases with x and as $x \to -\infty$, $f(x) \to 0$. As $f(x) + \ln f(x) = x$, $e^{f(x)}f(x) = e^x$, hence for $x \to -\infty$ $e^{o(1)}f(x) = e^x$ or $f(x) = e^x(1 + o(1))$. The function $f(x)$ is also defined for complex arguments, and then it is holomorphic but it is not single valued.

Stage (iii). Look at the differential equation $dy/dx = y/(1 + y)$ (for $y \ne 0$) or equivalently $(1 + y)/y$ $dy = dx$ or $dy/y + dy = dx$ or $\ln y + y = x + c$ or $y = f(x + c)$. Thus if $y = g(t)$ is a function with complex values defined for all

negative real numbers $t < t_0$, and if it is a solution of the equation, then for some complex c and branch of f, $g(t) = f(t + c)$ for every such t. Because, if $t_1 < t_0$, $g(t_1) \neq 0$, -1 , choose $c_1 = g(t_1) + \ln g(t_1) - t_1$; then for a proper branch of f, $g(t_1) = f(t_1 + c_1)$. Hence by the uniqueness theorem $g(t) = f(t + c)$ for a neighborhood of t_1 , and hence for all $t < t_0$. (We choose $g(t_1) \neq 0$ to make $f(g(t_1))$ well defined, and $g(t_1) \neq -1$ to avoid the branching point when $d/dy (y + \ln g(y)) = 0$. As $g(t)$ for $t < t_1$ cannot take always the values $0, -1$, we are through (remember that we assume $y \neq 0$).

Looking at $y + \ln y = x + c$, we know that

(3) if
$$
x \to -\infty
$$
 then either $y \to -\infty$ or $y \to 0$.

If $y \rightarrow -\infty$, $y = x + O$ (ln x).

If $y \rightarrow 0$, then as before, $y = e^{x+c}(1+o(1))$.

Stage (iv). Choose real negative numbers a_1, \dots, a_n such that $f(a_1), \dots, f(a_n)$ will be algebraic numbers which are linearly independent over the rationals. By Lindemann's theorem (see [8])

$$
e^{f(a_1)} \cdots e^{f(a_n)}
$$

are transcendentally independent Since $f(a_i)$ are algebraic $\neq 0$, and $e^{f(x)} f(x) = e^x$; also e^{a_1}, \dots, e^{a_n} are transcendentally independent.

Stage (v). If $P(x_1, \dots, x_n)$ is nontrivial, polynomial with algebraic coefficients, then for some $t_1 < 0$ $P(f(t + a_1), \dots f(t + a_n)) \neq 0$ for all $t < t_1$. Suppose not. Let us see what will be the dominant term when $t \to -\infty$. If P has a free constant as $t \to -\infty$, $f(t + a_i) \to 0$ (see Stage (ii)). This is a contradiction. Now let $P(x_1, ..., x_n) = \sum_{\eta \in I} c_{\eta} \prod_{i=1}^n x_i^{\eta(i)}$, for c_{η} algebraic, $\eta(i)$ natural numbers.

Then $f(t + a_i) = \exp(t + a_i) (1 + o(1)),$

$$
f(t + a_i)^n = \exp(nt + na_i)(1 + o(1))
$$

$$
\prod_{i=1}^n f(t + a_i)^{n(i)} = \exp(\left[\sum \eta(i)\right]t) \exp(\sum \eta(i)a_i) (1 + o(1)).
$$

As $t \to -\infty$, clearly the dominant terms will be those with minimal $\sum_{n=1}^{\infty} \eta(i)$, say m. Let $J = \{ \eta \in I: \sum_{i=1}^n \eta(i) = m \}$ so for some $\eta' \in J$ $c_{n'} \neq 0$.

$$
P(\cdots, f(t+a_i), \cdots) = \sum_{\eta \in J} c_{\eta} \exp(mt) \exp(\sum \eta(i)a_i)(1 + o(1)) + O(\exp((m+1)t))
$$

$$
= \sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} \exp(\sum \eta(i)a_i) \exp(mt)(1 + o(1))
$$

$$
+ O(\exp(t(m+1)).
$$

For this to be zero for arbitrarily small $t < 0$, necessarily

$$
0 = \sum_{\eta \in J} c_{\eta} \exp\left(\sum \eta(i)a_i\right) = \sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} \left(\exp(a_i)\right)^{\eta(i)}.
$$

As $\eta' \in J$, $c_{\eta'} \neq 0$, this contradicts the transcendental independence of the e^{a_i} (see Stage (iv)).

Stage (vi). By (v), $P_0(f(t + a_1), \dots, f(t + a_n), y) = 0$ as an equation in y, has a solution $y = g(t)$ for each $t < t_0$, for some t_0 (make the leading coefficient nonzero). Also we can assume that for $t < t_0$, the resultant of this polynomial is not zero. (If it is identically zero as a polynomial in $f(t + a_i)$, $P_0(x_1, \dots, x_{n+1})$ will be decomposable over $F_0(x_1, \dots, x_n)$, contradicting the minimality of the degree of P_0 in x_{n+1} .)

Thus we can choose one branch of the solution $y = g(t)$ hence, clearly, g is an analytic function.

Stage (vii). *g* is a solution of $Dy = y/(1 + y)$.

Let $P_0 = \sum_{n \in I} c_n \prod_{i=1}^{n+1} x_i^{n(i)}$ (c_n algebraic, $n(i)$ natural numbers). Note that if *h(t)* solves $Dy = y/(1 + y)$, then $(d/dt) h(t)^m = h(t)^m [m/(1 + h(t))]$. Then

$$
0 = \frac{d}{dt} P_0(f(t+a_1), \cdots, f(t+a_n), g(t))
$$

=
$$
\sum_{n \in I} \left[c_n \prod_{i=1}^n f(t+a_i)^{\pi(i)} g(t)^{\pi(n+1)} \left(\sum_{i=1}^n \frac{\eta(i)}{1+f(t+a_i)} \right) \right]
$$

+
$$
\sum_{n \in I} \left[c_n \prod_{i=1}^n f(t+a_i)^{\pi(i)} g(t)^{\pi(n+1)-1} \eta(n+1) \right] \frac{dg(t)}{dt}.
$$

The coefficient of $dg(t)/dt$ is $(d/dy) P_0(x_1, \dots, x_n, y)$. As for all $t < t_0$ the resultant of $P_0(f(t + a_1), \dots, f(t + a_n), y)$ is not zero, it has no common root with its derivative. So from the above-mentioned equality we can solve *dg/dt(si* nee the a'_i s are real $f(t + a_i) > 0$, hence $1 + f(t + a_i) \neq 0$.) Thus, dg/dt $= P_1(\cdots f(t + a_i) \cdots, g(t)) / P_2(\cdots, f(t + a_i), \cdots, g(t)).$ In the same way, in the differential field F,

$$
Dy_{n+1} = P_1(\cdots, y_i, \cdots, y_{n+1})/P_2(\cdots, y_i, \cdots, y_{n+1}).
$$

On the other hand $Dy_{n+1} = y_{n+1}/(1 + y_{n+1})$, so define

$$
P_3(y_1, \cdots, y_{n+1}) \equiv P_1(y_1, \cdots, y_{n+1}) (1 + y_{n+1}) - P_2(y_1, \cdots, y_{n+1}) y_{n+1} = 0.
$$

As *n* was minimal, y_1, \dots, y_n were transcendentally independent. Hence the

polynomial $P_3(y_1, \dots, y_n, x)$ is divisible by $P_0(y_1, \dots, y_n, x)$. (The quotient has coefficients in $F_0(y_1, \dots, y_n)$ and we can assume no denominator becomes zero when we replace y_i by $f(t + a_i)$ $t < t_0$.) So $P_3(f(t + a_i), \dots, f(t + a_n), g(t)) = 0$ or equivalently $dg(t)/dt = g(t)/(1 + g(t)).$

Stage (viii). For some *b* and proper branch of f , $g(t) = f(t + b)$ for every $t < t_0$; and

(a)
$$
f(t + b) = t + O(\ln|t|)
$$
 for $t \to -\infty$
or

(b)
$$
f(t + b) = e^{t + b} (1 + o(1))
$$
 for $t \to -\infty$.

We obtain this result by combining stages (iii) and (vii) and (3) .

We shall now contradict possibility (a). What will be the dominant part of $P_0(f(t + a_1), \dots, f(t + a_n), f(t + b))$ (which is identically zero)?

If $P_0(x_1, \dots, x_{n+1})$ has a term $c_1x_{n+1}^m$, $m \ge 0$ $c_1 \ne 0$, letting m be the maximal one, we obtain

$$
P_0(f(t+a_1),\cdots f(t+a_n),\,f(t+b))=c_1t^m+O(t^{m-1}\ln|t|).
$$

(Remember $f(t) = e^{t}(1 + o(n))$ for $t \to -\infty$). This goes to infinity when $t \to -\infty$ a contradiction, so there is no such term. Let

$$
P_0(x_1, \cdots x_{n+1}) = \sum_{\eta \in I} c_{\eta} \prod_{i=1}^{n+1} x_i^{\eta(i)}
$$

where c_n are algebraic. Then this equals

(4)
$$
\sum_{\eta \in I} c_{\eta} \prod_{i=1}^{n} \exp((t + a_{i})\eta(i)) t^{\eta(n+1)}(1 + o(1))
$$

so the dominant terms are those with $\sum_{i=1}^{n} \eta(i)$ minimal, say m, and among them, those with maximal $\eta(n + 1)$, say k. So letting $J = \{\eta \in I: \sum \eta(i) = m, \eta(i + 1)\}$ $= k$, (4) equals

$$
\left(\sum_{\eta\in J}c_{\eta}\prod_{i=1}^n\exp(a_i\eta(i))\right)e^{mt}\cdot t^k\ (1+o(1)).
$$

Hence necessarily $\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} (\exp(a_i))^{\eta(i)} = 0$, contradicting Stage (iv). So, necessarily, (b) holds.

Stage (ix). Let $a_{n+1} = b$; by the last stage $f(t + a_i) = \exp(t + a_i)(1 + o(1))$ for $1 \leq i \leq n+1$.

As $P_0(\dots, f(t + a_i), \dots) = 0$ and the dominant part of it for $t \to -\infty$ is

$$
\left(\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} (\exp(a_{i})^{\eta(i)}) \right) \exp(t \sum \eta(i))
$$

(*J* is the set of $\eta \in I$ with minimal $\sum \eta(i)$ so

$$
P_4(x_1, \cdots, x_{n+1}) = \sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n+1} x_i^{\eta(i)}
$$

is homegeneous) then necessarily $P_4(\cdots, e^{a_i}, \cdots) = 0$, that is, $e^{a_i}, \cdots, e^{a_{n+1}}$ are transcendentally dependent. As P_4 is homogeneous, for every t,

$$
P_4(\cdots, e^{t+a_1}, \cdots) = 0 \text{ or }
$$

(a) $P_4(\cdots, f(t + a_i) \exp(f(t + a_i)), \cdots) = 0$; but also

(b)
$$
P_0(\cdots, f(t+a_i), \cdots) = 0.
$$

Stage (x). We choose a_1, \dots, a_n , only so that $P^i(\dots, a_i, \dots, a_i, a_i, \dots) \neq 0$ for a specific finite set of pol_jnomials $Pⁱ$ with algebraic coefficients. Thus there is an $\varepsilon > 0$ and t'_0 so that every $a_i \in (a_i - \varepsilon, a_i' + \varepsilon)$ will satisfy the same demands for $t < t₀'$, hence all our conclusions, in particular the existence of a'_{n+1} . Hence for $t < t'_0$ (by (a), (b) from stage (ix))

- (a) $P_1(\dots, f(t + a_i') \exp(f(t + a_i'))$, ...) = 0 and
- (b) $P_0(\dots, f(t + a_i), \dots) = 0$.

Let k_1 be the degree of $P_0(x_1, \dots, x_{n+1})$, and k_2 be the dimension of the field F_1 generated by the coefficients of P_0 over the rationals.

Now choose $t^* < t_0$ so that $t^* + a_i + \varepsilon < t_0$; and choose a'_i in $(a'_i - \varepsilon, a_i + \varepsilon)$ so that $f(t^* + a'_i)$, $i = 1$, *n* are algebraic but not linearly dependent over the rationals and moreover $f(t^* + a_i') = q_i^1 + q_i^2 a_i^i$, q_i^1, q_i^2 rationals, $q_i^2 \neq 0$ and a_i is the $p^{(i)}$ root of 2 where $p^{(1)} > k_1 k_2$, $p^{(i+1)} > \prod_{i \leq i} p^{(i)} k_1$, $p^{(i)}$ natural numbers.

By (b) $f(i^* + a'_{n+1})$ is algebraic over $f(i^* + a'_i)$, $i = 1, n$; hence algebraic, and $exp(f(t^* + a_i'))$, $i = 1$, *n* are transcendentally independent by Lindman theorem, but $exp(f(t + a'_{n+1}))$ depends on them, by (a).

By (a) and Lindman's theorem (see [8]), $f(t^* + a'_{n+1})$ is linearly dependent on a'_1, \dots, a'_n over the rationals, hence for rationals $q_i, f(t^* + a'_{n+1}) = \sum_{i=1}^n q_i f(t^* + a'_i)$. We can substitute this in $P_0(\cdots, f(t^* + a'_i), \cdots) = 0$ and obtain $P_5(f(t^* + a'_i))$, \cdots , $f(t^* + a'_n) = 0$, where P_5 is a polynomial over F_1 , and the degree of P_5 is $\leq k_1$. This implies that P_5 is identically zero by dimensional consideration, and the condition on the set of $p^{(i)}$.

If we substitute in $P_0(x_1, \dots, x_{n+1})$ $x_{n+1} = \sum q_i x_i$, we obtain the zero polynomial. By the minimality of the degree of P_0 in x_{n+1} , and in general, we can assume $P_0(x_1, ..., x_{n+1}) = x_{n+1} - \sum q_i x_i$.

Stage (xi). Now

$$
y_{n+1} = \sum_{i=1}^{n} q_i y_i
$$
 for q_i complex rationals.

Hence

$$
Dy_{n+1} = \sum_{i=1}^{n} q_i Dy_i = \sum_{i=1}^{n} q_i \frac{y_i}{1+y_i} = Dy_{n+1} = \frac{y_{n+1}}{1+y_{n+1}}
$$

=
$$
\sum_{i=1}^{n} q_i \frac{y_i}{1+y_i} = \sum_{i=1}^{n} q_i y_i / \left(1 + \sum_{i=1}^{n} q_i y_i\right).
$$

As y_1, \dots, y_n are transcendentally independent, this is an identity so it holds if we substitute for the set of y_i complex numbers. If $i \neq j$, $q_i \neq 0$, $q_j \neq 0$ set $y_i = -1 + \varepsilon$, $y_j \neq -1$, $-(1 + q_i y_j) 1/q_j$ and $y_k = 0$ for $k \neq i, j$. Then we obtain a contradiction as $\varepsilon \to 0$. Thus $n = 1$, $y_2 = y_{n+1} = q_1 y_1$, and

$$
q_1 \frac{y_1}{1+y_1} = \frac{q_1 y_1}{1+q_1 y_1}.
$$

For $y_1 \neq 0$ we obtain $q_1 = 0$ or $q_1 = 1$. If $q_1 = 0$, $y_2 = 0$; if $q_1 = 1$, $y_2 = y_1$, a contradiction in any case.

THEOREM 5. *The prime differentially closed field is not minimal. (It is the prime* T_{dc}^{0} *-field over the field of rational numbers.)*

PROOF. Let F be that field. The equation $Dy = y/(1 + y)$ is not an algebraic formula since in some T_{dc}^0 -field (of functions) it has infinitely many solutions. Hence it has infinitely many nonzero solutions $y_i \in F$, $i < \omega$. Since the theory T_{dc}^0 has elimination of quantifiers, clearly the $\{y_i: i < \omega\}$ is an indiscernible set, hence by $[10]$ (or see for example [6]), F is not minimal. (The elaboration for this particular case is easy: there is a field $F' \subseteq F$ prime over the field generated by $\{y_{2i}: i < \omega\}$, and $F' \neq F$ as $y_{2t+1} \notin F'$).

LEMMA 6. *Let F be a differential field;* {f,g} *differentially independent elements of F. Let* y_1, \dots, y_n , *be distinct nonzero solutions of Dy = yf* $/(1 + y)$; y^1, \dots, y^m be distinct nonzero solutions of $Dy = (y/(1 + y))g$. Then for no non*trivial polynomial P with rational coefficients,* $P(y_1, \dots, y_n, y^1, \dots, y^m) = 0$ *.*

PROOF. Similar to that of Theorem 5.

REMARK. No doubt the restrictions on f , g can be weakened.

THEOREM 7. *For every* $\lambda > \aleph_0$, T_{dc}^0 has 2^{λ} non-isomorphic fields of power λ .

PROOF. Let F be a differentially closed field of power λ , f_2 , $g_i \in F$, and ${f_i: i < \lambda} \cup {g_i: i < \lambda}$ a differentially independent set with F prime over it.

Let $\phi(x_1, x_2) = [Dx_1 = (x_1/(1 + x_1))x_2]$. By Lemma 6, if y is a new element satisfying $\phi(y, f_i g_j)$, F' the prime differentially closed field over F(y), and $\langle h, l \rangle \neq \langle i, j \rangle$ then no $y' \in F' - F$ satisfies $\phi(y', f_h g_t)$. By repeating, we can obtain for any binary relation R over λ a field F_R such that

$$
\left| \{ y \in F_R : \phi(y, f_i g_j) \} \right| = \aleph_1 \text{ iff } \langle i, j \rangle \in R \text{ iff}
$$

$$
\left| \{ y \in F_R : \phi(y, f_i g_j) \} \right| \neq \aleph_0.
$$

Then by [11] the result follows easily.

2. On the existence of T_{rdc}^p -prime field over T_{rd}^p -field

THEOREM 8. *Over every differential radical field of characteristic p* $($ = T_{rd}^p -field) *there is a prime differentially closed radical field* (= T_{rdc} -field). PROOF.

Stage (i). By Morley [3] (or see [6]) it suffices to prove the following. (Remember that by Wood [13], T_{rdc}^{p} has elimination of quantifiers.)

Let F be a T_{rd}^p -field and let $\phi(x)$ be a consistent formula with parameters from F. Then there is a consistent formula $\psi(x)$ with parameters from F such that $\psi(x) \rightarrow \phi(x)$ and $\psi(x)$ defines an isolated type, that is, if y satisfies ψ , then the structure of $F_{rd}(y)$ (the T_{rd}^p -field generated by F, y) is uniquely defined. Without loss of generality, ϕ is a quantifier-free formula and moreover it is a conjunction of atomic formulas and negation of action formulas.

We can also assume without loss of generality that F is separately closed.

Stage (ii). Let $F' \supseteq F$ be a $T_{r_a}^p$ -field in which y satisfies $\phi(x)$. Let $\tau_0 = \tau_0(y) = y$ and $\tau_1 = \tau_1(y), \dots, \tau_n = \tau_n(y)$ be the terms appearing (maybe as subterms)in $\phi(y)$ which are of the form $r(\cdots)$. (Remember r is the pth root.) Let $n(i)$ be the highest n such that $D^{\pi} \tau_i$ appear in ϕ . We can assume without loss of generality that in ϕ there appears no term of the form $D(\sigma_1 + \sigma_2)$ or $D(\sigma_1 \sigma_2)$ (since then we could simplify it); and that if $r(\sigma)$ appears in it, then one of the conjuncts of ϕ is $D\sigma = 0$

Thus if $F \subseteq F'' \subseteq F'$, F'' is a T^p -field and $D^j \tau_j(y) \in F''$ for $j \leq n(i)$, then $\phi(y)$ is meaningful in *F".*

Stage (iii). We derive ϕ' from ϕ by adding to it for each $i \leq n$ a conjunct as follows:

(a) If there is an $m = m(i)$ such that $D^m \tau_i(y)$ is in the separable closure of $F'_{i} = F(\cdots, D^{j} \tau_{k}(y), \cdots, D^{l} \tau_{i}(y), \cdots)_{k < i, l < m}$ then let $P_{i}(x) = \sum_{i} \sigma_{i}^{i} x^{l}$ be an indecomposable polynomial over F'_i of which $D^m \tau_i(y)$ is a root. Then the conjunct will be $\sum_i \sigma_i^i [D^m \tau_i(y)]^i = 0 \land \sigma \neq 0$ where σ is the resultant of $P_i(x)$.

This guarantees that $D^l \tau_i(y)$, $l \geq m$ is in $F_i(D^m \tau_i(y))$ and that $D^m \tau_i(y)$ is separably algebraic over F_i' .

(b) If there is not such an m, we add nothing.

Stage (iv). Let $F'' \subseteq F'$ be the T^{*p*}-field generated by F and $D^j \tau_i(y)$ for $j \leq n(i)$ (that is, generated only by the field operations). Supplement it by defining $D(D^{n(i)}\tau_i(y)) = 0$, if i satisfies (b) above; we obtain a T_i^p -field F^* and by [7] there is a T_{rd}^p -field $F^{**} \supseteq F^*$. Add to ϕ' , for each such *i*, the conjunct $D^{n(i)+1}\tau_i(x) = 0$ to obtain ϕ'' .

Stage (v). Now case (a) of Stage (iii) always occurs, hence we can express each $D^{j}\tau_{i}(y)$ ($j > n(i)$) by a polynomial in $\{D_{i}\tau_{i}(y): k \leq n(i), l \leq n(i)\}$ with coefficients in *F*. Add to ϕ'' conjuncts so that the trancendence rank of $F(\cdots, D^k \tau_{\phi}(y), \cdots)$ $= F_d(\tau_0(y), \dots, \tau_n(y))$ is minimal. For each $j \leq n(i)$, if $D^j \tau_i(y)$ is algebraically dependent on $\{D^t \tau_k(y) : k < i \text{ or } k = i, l < j\}$, then we obtain ϕ^m by adding conjuncts to ϕ to make the degree of the polynomial it solves as small as possible.

Without loss of generality let y in F' satisfy $\psi(y) \equiv \phi'''(y)$.

Now ψ completely determines the structure of

$$
F'' = {}^{df} F(\cdots, D^J \tau_i(y), \cdots)_{j \leq n(i), i \leq n} = F_d(\tau_0(y), \cdots, \tau_n(y)).
$$

If F'' is a T_{rd}^p -field, then we are through. This is equivalent to saying that $c \in F'' - F$, $Dc = 0$ implies c has a p root in F'' .

Stage (vi). Suppose $c \in F'' - F$, $Dc = 0$ but c has no p root in F''. We arrive at a contradiction.

Let $c = P_0(\dots, D^j \tau_i(y), \dots)$, where P_0 is a polynomial over F. Now if in Stage (v) we had also added $P_0(\cdots, D^j \tau_i(x), \cdots) = b$ for any $b \in F$ to $\phi''(x)$, the transcendence rank of $F_a(\tau_0(y), \dots)$ would have become smaller. We have not done it because it is impossible. In other words, letting

$$
\theta_0(x_1) = (\exists x)(x_1 = P_0(\cdots, D^j \tau_i(x), \cdots) \wedge \psi(x))
$$

and $F^c \supseteq F''$ be a T_{rdc}^p -field, then for no $b \in F$, $F^c \models \theta_0(b)$. As T_{rdc}^p has elimination of quantifiers for some quantifier-free $\theta_1(x_1)$, T_{rdc}^p + ($\forall x_1$) $[\theta_1(x_1) \equiv \theta_0(x_1)].$ Without loss of generality, F^c is $|F|$ +-saturated.

Stage (vii). Let $F^0 \subseteq F$ be the prime field (that is, the one generated by 1) and let $a_n \in F$, for $n < \omega$, be distinct elements which are in the separable closure of F^0 in F. Clearly $F \models \neg \theta_1(a_n) \land Da_n = 0$. By the compactness theorem there is an element $a \in F^c - F$, $F^c \models \neg \theta_1(a) \land D(a) = 0$. Let F^1 be the separable closure of $F_{rd}^{0}(a)$ in F^{c} and let F^{2} be the separable closure of $F^{0}(c)$ in F'' . Clearly for $b \in F^{2}$ $Db = 0$, and there is an embedding $f: F^2 \to F^1$, $f(c) = a$ which is the identity on F^* (see below). Let F^3 be the closure of F^1 to a T_{rd} -subfield of F^c . Notice that $F^* = \{b \in F^c : b \text{ is separably algebraic over } F^0\}$ is a T_{rd} -field; hence F^* is algebraically closed. The diagram is shown in Fig. 1 (arrows denote inclusion).

Fig. 1

Notice that:

(a) ([7]) although the amalgamation property does not hold for T_d^p -fields in general, if

1. g_1 : $F^{\delta} \rightarrow F_{\alpha}$, g_2 : $F^{\delta} \rightarrow F_{\beta}$ are embeddings of T_{d}^{ρ} -fields, and

2. $b \in F^{\delta}$, $Db = 0$ but has no p-th root in F^{δ} implies $g_1(b)$ has no p-th root in F_{α}

3. no $b \in F_a - g_1(F^{\delta})$ is the root of a separable polynomial over $g_1(F^{\delta})$, then there is a T_d^1 -field F_y , and embeddings $f_1: F_y \to F_y$, $f_2 = F_\beta \to F_y$ such that $f_1g_1 = f_2g_2$, and without loss of generality for example f_1 is the identity.

(b) If $b \in F^2$, and b has no p-th root in F^2 then b has no p-th root in F''. Because, without loss of generality, $b \notin F^*$. Suppose b has a p-th root in F''. Then $\sum_{i\leq n}(\sum_{i\leq n(i)}t_{ij}c^i)b^j = 0$, $t_{ij} \in F^0$ where $\sum_{i\leq n}(\sum_{i\leq n(j)}t_{ij}c^i)x^j$ is indecomposable, and for some $j \neq 0$ (mod p) $\sum_i t_{ij} c^i \neq 0$ (because $b \in F^2$). We can assume *n*, *n*(*j*) are minimal. As c, $b \notin F^*$, they are transcendental over F_0 , hence $\sum_{i} t_{i}x^j y^j$ is indecomposable over F^o, and $\Sigma_i(\Sigma_j t_{ij}b^j)x^i$ is indecomposable over F^o. Then in

 F^c , $\sum_{i} t_{ij} r(c)^{i} r(b)^{j} = 0$ (remember $r(t_{ij}) = t_{ij}$ as $t_{ij} \in F^0$). Since $r(b) \in F''$, $\sum_{i} t_{ij} r(b)^j \in F''$ but $r(c)$ cannot be separably algebraic over *F*". Now $i \neq 0$ (mod p) implies $\sum_i t_{ij} r(b)^j = 0$, hence $\sum_i t_{ij} b^j = 0$ and $t_{ij} = 0$ (as b is not algebraic over F^0). Thus $\sum_{i} t_{ni} c^{pi} b^j = 0$, and in *F"*, $\sum_{i} t_{ni} c^i r(b)^j = 0$, so $r(b)$ is separably algebraic over F^2 and $r(b) \in F'' - F^2$, and we have finished.

(c) No $b \in F'' - F^2$ is the root of a separable polynomial over F^2 , because F^2 is the separable closure of $F(c)$ in F'' .

Stage (viii). Combine (a), (b), (c), and $f: F^2 \to F^1$ from Stage (v).

Let $F^{\delta} = F^2$, $F_{\alpha} = F''$, $F_{\beta} = F^3$, $g_1 =$ the identity, $g_2 = f$. Then by (b), (c), (2) and (3) of (a) hold. Hence there are a T_{rdc}^p -field $F_\gamma \supseteq F''$ and an embedding $g: F^3 \to F_\gamma$ such that $gf =$ identity, hence $g(a) = c$. Now $F^3 \models \neg \theta_1(a)$ (we chose a in this way) hence $F_r \models \neg \theta_1(c)$, hence $F_r \models \neg \theta_0(c)$. But $F_r \supseteq F''$, so $F_r \models \theta_0(c)$, a contradiction. Q.E.D.

3. Stability of T_{rel}^p

THEOREM 9. T_{rdc}^p is stable.

PROOF.

Stage (i). Suppose $F^1 \subseteq F^2$ are T_{rdc}^p -fields, $|F^1| \leq \lambda$. We should prove that the set of types elements of F^2 realized over F^1 is $\leq \lambda^{k_0}$. For each $y \in F^2$ choose a countable field $F_v \subseteq F^2$ such that

(a) F_v is a countable T_{rad}^p -field, $y \in F_v$,

(b) $F_v \cap F^1$ is a T_{rad}^p -field,

(c) if $a_1, \dots, a_n \in F_y$ are linearly dependent over F_1 , then they are linearly dependent over $F_v \cap F^1$.

Let F^{ν} be the field (= T_a^{ν} -field) generated by $F_v \cup F^1$.

Stage (ii). Now define an equivalence relation over F^2 :

$$
y_1 \sim y_2
$$
 iff $F_{y_1} \cap F^1 = F_{y_2} \cap F^1$,

and there is an isomorphism f from F_y , onto F_y , $f(y_1) = y_2$, f restricted to $(F_v, \cap F^1) =$ identity.

Clearly \sim has $\leq \lambda^{80}$ equivalence classes; if $y_1 \sim y_2$ then we can extend the corresponding f to an isomorphism from F^{y_1} onto F^{y_1} which is the identity over F^1 . If F^{y_1} is a T_{rd}^p -field this implies (as T_{rdc}^p has elimination of quantifiers) that y_1, y_2 realize the same type over $F¹$. Hence it suffices to prove

$$
(5) \tFy \t is Trdp-field.
$$

Let $F = F_v \cap F^1$, $F_1 = F_v$, $F_2 = F^1$.

REMARK. In fact we have more than the needed information to prove that the T_a^p -field F^y, generated by F_1 , F_2 , is a T_a^p -field.

Stage (iii). Suppose $c^* \in F$, $Dc = 0$ but c has no p-th root in F . Thus $c^* = \sum a_i b_i / \sum a^i b^i$, a_i , $a^i \in F_1$, $b_i, b^i \in F_2$. Then $c = \sum a_i^r b_i^r / (\sum^r a_i^r b_i^r)^p$, and clearly $D(\sum_i a_i^{\prime\prime}b_i^{\prime\prime})=0$. So without loss of generality $c = \sum_{i=1}^n a_i b_i$, $a_i \in F_1$, $b_i \in F_2$. Choose the sets a_i , b_i so that n is minimal. This implies that

- (a) $\{a_1, \dots, a_n\}$ are linearly independent over F,
- (b) b_1, \dots, b_n are linearly independent over F. Hence
- (c) $\{a_i b_j : i, j \leq n\}$ are linearly independent over *F*.

PROOF OF (c). If $\sum_{i,j} t_{i,j} a_i b_i = 0$, $t_{i,j} \in F$ then $\sum_i a_i (\sum_j t_{i,j} b_j) = 0$. Since the $a_i \in F_1$ are linearly independent over F they are also linearly independent over F_2 (by Stages (a)-(c)); thus $\sum_j t_{i,j} b_j = 0$ and hence $t_{i,j} = 0$.

Stage (iv).

- (a) *Da_i* is linearly dependent on $\{a_1, \dots, a_n\}$ over *F*;
- (b) Db_i is linearly dependent on $\{b_1, \dots, b_n\}$ over F.

PROOF. Choose $1 \leq i_1 < \cdots < i_l \leq n$ such that $\{a_1, \cdots, a_n, Da_i, \cdots, Da_i\}$ is linearly independent over F , and each Da_i depends on it over F . Choose similarly $1 \leq j_1 < \cdots < j_k \leq n$ such that $\{b_1, \cdots, b_n, Db_{j_1}, \cdots, Db_{j_k}\}$ is linearly independent over F but each Db_j depends on it over F.

$$
0 = Dc = \sum_{i} a_{i}Db_{i} + \sum_{i} (Da_{i})b_{i}.
$$

Substitute the expressions of Da_i , $i \notin \{i_1, \dots, i_j\}$, and for Db_j , $j \notin \{j_1, \dots, j_k\}$, and collect the terms. Then as in (iii) the coefficient of each $a_i b_j$, $a_i Db_j$, $(ba_{i_m}) b_j$ is zero. If $l > 0$ the coefficient of $(Da_{i_l})b_1$ is 1, a contradiction. Thus $l = 0$, and similarly $k = 0$. Hence for some $t_j^i \in F$, $s_j^i \in F$, $Da_i = \sum_j t_j^i a_j$, $Db_i = \sum_j s_j^i b_j$.

Stage (v). Let

(6)
$$
Dx_i = \sum_{j=1}^n u_j^j x_j, \ i < n; \ u_j^i \in F
$$

or, in short, $D\bar{x} = U\bar{x}$, \bar{x} is a vector of length n, U an $n \times n$ matrix. Then there are solutions $\bar{a}_0, \dots, \bar{a}_m$ (for $m < n$) in F such that for any other solution \bar{a} from F^2 there are $d_0, \dots, d_m \in F^2$, $Dd_i = 0$ such that $\bar{a} = \sum_{1 \le m} d_i \bar{a_i}$. Let $\bar{a_0}, \dots, \bar{a_m}$ be a

maximal set of solutions of (6) which are linearly independent over F (as vectors). Let \bar{a} be any other solution from F. (This is sufficient as F is an elementary submodel of F^2 .) Then

$$
\begin{aligned}\n\tilde{a} &= \sum_{i \le m} d_i \tilde{a}_i \text{ for some } d_i \in F^2 \text{ and} \\
U\tilde{a} &= D\tilde{a} = D \left(\sum_i d_i \tilde{a}_i \right) = \sum_i D(d_i) \tilde{a}_i + \sum_i d_i D\tilde{a}_i \\
&= \sum_i (Dd_i) \tilde{a}_i + \sum_i d_i (U\tilde{a}_i) = \sum_i (Dd_i) \tilde{a}_i + U \left(\sum_i d_i \tilde{a}_i \right) \\
&= \sum_i (Dd_i) \tilde{a}_i + U\tilde{a}.\n\end{aligned}
$$

Thus $\sum_i (Dd_i)\bar{a}_i = 0$, $Dd_i \in F$. Since the set of \bar{a}_i was linearly independent in F, and F is an elementary submodel of F^2 , and since T_{rdc}^p is model-complete, the set of \bar{a}_i is linearly independent in F^2 . Hence $Dd_i = 0$. The same holds for F_1 , F_2 instead of F^2 .

Stage (vi). Combining the conclusions of (iv), (v), we arrive at the following representations:

$$
a_i = \sum_j \alpha_j^i d_j \text{ for } \alpha_j^i \in F, d_j \in F_1, D d_j = 0, j < n_1.
$$

$$
b_i = \sum_j \beta_j^i e_j \text{ for } \beta_j^i \in F, e_j \in F_2, D e_j = 0, j < n_2.
$$

Hence

$$
c = \sum \gamma_j^i d_i e_j \text{ for } \gamma_j^i \in F, d_i \in F_1, e_j \in F_2, D d_i = D e_j = 0.
$$

Choose such representation with minimal n_1 ; among those with minimal n_1 , choose a representation with a minimal n_2 . Hence the set of d_i is linearly independent over F and also the e_i are linearly independent over F .

Hence, as in Stage (iii), $\{d_i e_j : i < n_1, j < n_2\}$ is linearly independent over *F*. Now since

$$
0 = Dc = \sum_{i,j} (D\gamma_j^i) d_i e_j \text{ (as } Dd_i = De_j = 0)
$$

and $D\gamma_j^i \in F$, clearly $D\gamma_j^i = 0$. Thus γ_j^i have a p-th root in *F*, d_i has a p-th root in F_1 , and e_j has a p-th root in F_2 . Thus

$$
r(c) = \sum_{i,j} r(\gamma_j^i) r(d_i) r(e_j) \in \text{(the field generated by } F_1, F_2).
$$
 Q.E.D.

ACKNOWLEDGEMENT

I would like to thank Y. Kannai for suggesting that I try, for Section 1, differential equations with transcendental first-integral (when I presented him with the problem in "differential equations theory" terms); and to thank B. Weiss and Y. Hirshfeld for helpful discussions.

ADDED IN PROOF

1. The non-minimality of the prime T_{dc}^0 -field was also proved, independently by Rosenlicht [5a].

2. Wood [14], [15] also gives a nice set of axioms of $T_{\text{rdc}}^{\text{p}}$.

3. The answer to Conjecture 3 is positive.

REFERENCES

I. L. Blum, *Generalized Algebraic Structures: Model Theoretic Approach,* Ph.D. thesis, M. I. T., 1968.

2. N. Jacobson, *Lectures in Abstract Algebra III,* Van Nostrand, Princeton, N. J., 1964. 2a. E. R. Kolchin, *Constrained extension of differential fields* (to appear).

3. M. D. Morley, *Categoricity in power,* Trans. Amer. Math. Soc. 114 (1965), 514-538.

4. J. F. Ritt, *Differential algebra,* Amer. Math. Soc. Colloquium Publ. 33 (1950).

5. A. Robinson, *On the concept of a differentially closed field,* Bull. Res. Council Israel, Sect. F. 8 (1959), 113-128.

5a. M. Rosenlict, *The non-minimality of the differential closure,* Pacific J. Math. (to appear). 6. G. Sacks, *Saturated MJdel Theory,* Benjamin, Reading, Mass., 1972.

7. A. Seidenberg, *An elimination theory for differential algebra,* Univ. California Publ. Math. (new Series) 3 (1964), 31-66.

8. C. L. Siegel, *Transcendental numbers,* Annals of Math. Studies, 16 Princeton Univ. Press, 1949.

9. S. Shelah, *Differentially closed fields,* Notices Amer. Math. Soc. 20 (1973), A-444.

10. S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107-113.

11. S. Shelah, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math 9 (1971), 473-487.

12. S. Shelah, Stability, superstability and the f. c. p. model-theoretic properties of formulas *in first order theory,* Annals of Math. Logic 3 (1971), 271-362.

13. C. Wood, *The model theory of differential fields of characteristic* $p \neq 0$ Proc. Amer. Math. Soc. 40 (1973), 577-584.

14. C. Wood, *Prime model extensions of differential fields, characteristic* $p \neq 0$. Notices Amer. Math. Soc. 20 (1973), p. A-445.

15. C. Wood, *Prime model extensions for differential fields of characteristic* $p \neq 0$ *(to appear)*.

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL